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Figure 4. The extreme N-terminus of TDP-43 is required 
for aggregation of full-length TDP-43.
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Introduction: TAR DNA-binding protein-43 (TDP-43) is the
principal component of ubiquitinated inclusions in amyotrophic
lateral sclerosis (ALS) frontotemporal lobar degeneration with
TDP-43-positive inclusions (FTLD-TDP) (1,2). TDP-43 contains
four functional domains, which include a nuclear localization signal
(NLS) and two RNA recognition motifs (RRMs) within the N-
terminal half of the protein, as well as a nuclear export signal
(NES) and a glycine-rich region in the C-terminal half. The NLS
and NES regulate the shuttling of TDP-43 between the nucleus
and the cytoplasm (3), while the RRM1 and RRM2 are responsible
for binding to nucleic acids, such as UG repeats (4,5). The glycine-
rich region mediates protein–protein interactions between TDP-43
and other hnRNP members (6). Since the C-terminal region of
TDP-43 harbors almost all known ALS-associated TDP-43
mutations (7), and contains Q/N-rich domains that promote TDP-
43 aggregation (8,9), research has mostly focused on the C-
terminal region of TDP-43. As a result, the functions of TDP-43’s
N-terminalregion remain largely unknown.

Methods: To bridge this gap in our knowledge, we utilized in-cell
cross-linking, CFTR mini-gene splicing, immunofluorescence,
neurite outgrowth and computer-assisted models to evaluate the
functions of TDP-43 N-terminus in regulating its folding, self-
interaction, biological activity and aggregation.

Results: We determined that the extreme N-terminus of TDP-43,
specifically the first 10 residues, regulates folding of TDP-43
monomers necessary for proper homodimerization and TDP-43-
regulated splicing. Indeed, deletion of these 10 residues, and even
mutations of key residues within this sequence, impairs TDP-43
homodimer formation and result in the loss of TDP-43-regulated
splicing. Despite such beneficial functions, we discovered an
interesting dichotomy: full-length TDP-43 aggregation, which is
believed to be a pathogenic process, also requires the extreme N-
terminus of TDP-43.

Discussion: Our findings indicate that the extreme N-terminal
region of TDP-43 is crucial for maintaining the normal conformation
and biological activity of TDP-43 under physiological conditions. In
disease, our data would suggest that the extreme N-terminal
region of TDP-43 mediates full-length TDP-43 oligomerization and
aggregate formation. This would result in a loss of functional TDP-
43 due to sequestration of wild-type TDP-43 into insoluble
inclusions, and perhaps a toxic gain of function resulting from the
generation of TDP-43 oligomers and aggregates.
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Figure 1. The first 10 N-terminal residues of TDP-43 
are required for its biological activity.
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Figure 2. The first 10 N-terminal residues of TDP-43 are 
required for the formation of a functional TDP-43 homodimer.
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Figure 3

Figure 3. Arg6, Val7, Thr8 and Glu9 are required for TDP-
43 homodimerization and splicing regulation.
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Figure 5. The extreme N-terminus of TDP-43 mediates 
full-length TDP-43 aggregation.
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